Numerical Study on Heat Distribution and Transfer Characteristics of a Manifold in a Coal Mine VAM TFRR Oxidation Bed

نویسندگان

  • Zongli Li
  • Yongqi Liu
  • Jinhui Han
  • Zhiming Wang
چکیده

A thermal flow-reversal reactor is candidate for utilizing low concentration ventilation air methane. In this paper, a numerical study is performed by using the FLUENT software to explore the details of the transient preheating and starting process of the thermal flow-reversal reactor oxidation bed. The bed was heated by hot gas, which was transported and distributed through the holes of manifolds to the middle of the bed. The homogeneous porous media and coupled heat transfer models were chosen; and the mass and heat flow distributions passing through the holes, the heat transfer on the outer surface of the manifold and the temperature distribution of the bed were calculated. The results indicate that the heat of the hot gas passing through the holes decreases gradually along the direction of the hot gas flowing in the manifold, causing the temperature of the bed decrease accordingly. The calculated temperatures of the oxidation bed are compared with the tested results. The maximum error between the calculation and the test was 8.9%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study on the Transient Preheating Process of a Regenerative Oxidation Bed

The transient preheating process of a regenerative oxidation bed placed in a coal mine methane thermal reverse-flow reactor is numerically investigated in this paper. The regenerative oxidation bed is heated by the burned gas which is generated from a burner and is distributed through manifolds, which is modeled in a three-dimensional, unsteady state and laminar flow system, and is assumed as a...

متن کامل

Experimental Investigations of Cold Flow Mass Distribution and Pressure Drop Characteristics in a Structured Honeycomb Monolith Bed

The thermal flow reversal reactor (TFRR) and catalytic flow reversal reactor (CFRR) can utilize the ventilation air methane (VAM) from coal mines effectively. The initial cold feed flow mass distribution uniformity in the monolith oxidation bed, the critical part of both reactors, has a great influence on the stability of methane oxidation process and conversation rate. So the emphases are put ...

متن کامل

Thermal oxidation of coal mine ventilation air methane

Methane is a powerful greenhouse gas and the principal component of natural gas. Coal seams often contain significant quantities of methane, and underground coal mines must ensure that methane released into the mine during coal extraction does not build to dangerous levels. This is accomplished in part through the use of large-volume ventilation systems that remove methane from the mine and rel...

متن کامل

A Numerical Study of Flow and Heat Transfer Between Two Rotating Vertically Eccentric Spheres with Time- Dependent Angular Velocities

The transient motion and the heat transfer of a viscous incompressible flow contained between two vertically eccentric spheres maintained at different temperatures and rotating about a common axis with different angular velocities is numerically considered when the angular velocities are an arbitrary functions of time. The resulting flow pattern, temperature distribution, and heat transfer char...

متن کامل

Numerical study of heat transfer in fluidized bed dryers by volume of fluid ‎method

The purpose of this study is numerical modeling of temperature variation of phases in a two phase regime in fluidized bed dryers including particles belonging to Group D of geldart classification. The mass transfer between phases is not taken into consideration in this modeling which has been assumed in three- dimensional, unsteady, and two-phase regime.To verify the modeling we consider the do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015